联系喜力

当前位置:喜力 > 联系喜力 >

AI的歧视问题也就不是一个简单的算法问题了

时间:2018-06-10 13:33 作者:admin 点击:

  首先是数据的限制。AI对事物作出的判断不是凭空或者随机而得的,它必须要经过一些列的训练学习才可以。那么,如果要训练它在某方面的能力,就要将相关领域的数据搜集起来供其学习。在这一方面,如果数据训练量不足,那么就会造成AI学习的不完备,其也就可能作出错误的判断。
 
  而数据限制的另一方面则来自数据本身。比如某个群体会有一些共性的特征,那么AI将会把这些大多数的共性特征数据作为标签来用。一旦对象不在这个群体特征里,或属于这个群体的少数特征,其就有可能采取否定的态度。
 
  关于AI歧视我们也聊了很多,比如相貌偏见、语言歧视等,但AI的歧视显然不仅只在这一个浅显的领域。在其相貌和语言歧视的背后,矗立的其实是AI对这个社会全方位的片面判断。
 
  事实上,目前我们面临的所有AI的歧视问题基本上是围绕着这两个方面展开的。数据学习不够多,或者数据学习够多之后,其学习范围超出了程序员设定的内容,然后开始进行自我学习和判断。这就造成了歧视行为的发生。
 
  2. 人类固有偏见的强化。
 
  但AI的歧视问题的根源并不在于数据和算法。在一定程度上,AI的歧视实际上是人类偏见的一种显现和强化。人类是善于进行言语上的克制的,或者表现出在沟通交流中的表面客套。长此以往,人们似乎把隐藏自己对别人的偏见当成了一种有素质的美德。问题变成了你心里歧视与否不重要,面上做得好,你就是一个好人。
 
  在这方面,做慈善的被曝丑闻后对比尤其突出。
 
  而AI出现的意义之一就是打破了人们维持表面友好的自我欺骗的情况,它把那些被人们刻意隐藏的,并且似乎被隐藏得很好的东西重新抖搂了出来。这就是显现,那么为什么说会得到强化呢?
 
  首先,AI学习就是一个排除的过程,比如对图像语义分割,它要找到眼球,就必须要先进行图像的分割,否定其他不适眼球的东西。同理,要招到一个合适的员工,它也是重点去排除不合适的选项。否定的过程,就是一个强化的过程。
 
  其次,是基于AI的特殊属性。AI是有史以来第一个人造的、有自己的判断能力的事物,当它出现一些违背人类维持表面友好而设定的一些规则的时候,人们一方面感到惊异,另一方面则会由此而进一步看清自己。它毫不留情地折了人类的面子,自然换来了更大的关注。
 
  算法的限制和对人类固有观念的强化,大抵可以说明了AI歧视横行的原因所在。那么,AI的歧视问题也就不是一个简单的算法问题了。今天我们就再聊一聊AI的偏见问题,以及面对它,我们究竟能做些什么。
 
  始作俑者的人类本身:AI歧视产生的根源
 
  首先我们需要清楚的是,发生AI歧视这种事情的原因在哪里。目前来看,大体上有两个个方面。
 
  其次则是算法的限制。程序员在设置AI学习程序的时候,无法做到过滤到每一条消极的信息。因此,AI在经过大量的数据学习之后,其会自动匹配不同群体之间的关键词,然后做出判断。比如职业的男女分化问题。
 
  AI歧视不仅类别多,影响可能还很大
 
  如果我们仅仅是被AI歧视了,并且知道它的歧视是算法和人类本身问题所致,那也就无需担心。毕竟,歧视无处不在,心理足够强大,任何歧视都够不成火力伤害。论不要脸的自黑精神,似乎没谁能比得过现代人。
 
  但是,当AI不仅仅是歧视你,还要对你做出判断,决定你的人生、工作、地位……的时候,你还能对它的歧视坐视不管吗?
 
  比如现在非常流行一个概念,用AI来进行招聘。
 
  在理论上来讲,它能够通过学习既有的员工资料来筛选最符合公司需求的新人。对这些员工进行标签分类是学习的一环,能力强、口才好、实习经验丰富等可能会被筛选出来,但是,万一在这些样本中,AI找到了其他具有高度相同但和招聘又无关的标签了呢?
 
  比如这些人可能男生多一点,它可能会认为女生不适合这项工作;如果城市户口的人多一点,来自农村的就有可能被筛掉;如果23岁以前的人多一点的话,那23岁以后的人就可能被认为不适合……
 
  你看,仅仅就是这几个方面,就已经涉及到性别歧视、地域歧视、年龄歧视了。虽然人们开发AI进行招聘是为了避免面试官会凭主观印象决定去留,但太过于客观的AI招聘同样也会引发一些值得考虑的问题。
 
  再比如把AI布置在警务工作当中。
 
  最近一段时间提到最多的就是利用AI帮助识别甚至是预测罪犯。比如去年上海交大的一篇论文中提出,可以通过人的样貌进行分析,来判断此人是否有犯罪的倾向。简单来说,就是看你是不是长了一张“犯人脸”。而美国的警察也在最近试图部署一套警务系统,来预测犯罪发生的人员相关、地理区域等,然后来针对性加强监控。英国来采用过类似的方法来预防犯罪。
 
  这其中自然存在着严重的问题。看“人脸”就能辨罪犯?虽然相貌歧视确实一直存在,但基本上都是基于五官的缺陷。现在居然升级了。美国的预测犯罪往往会把黑人和黑人集中区域当做重点预测对象,这是很难令人接受的。尤其是美国这样一个对黑人歧视非常忌讳的国家,AI即便不是个人,这一举动也会招致人们的讨厌。英国就更不用说了,他们的这个监视系统运行了一段时间之后,穷人被特别针对了,因此最终不得不紧急下线。
 
  从这几个案例当中,我们发现,AI还存在着相貌歧视、种族歧视、贫富歧视。除此之外,AI的歧视还深度存在于各行各业当中,甚至未来的一天我们可能真的会像《黑镜》当中一样戴一个隐形眼镜,然后就可以看到眼镜对面来人的安全度识别。高安全度也不一定真的安全,很有可能是刷出来的呢?